3.201 \(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=135 \[ -\frac {\sqrt {2} (A+C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 C \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[Out]

2*C*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)-(A+C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/co
s(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2*A*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1
/2)

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {3044, 2982, 2782, 205, 2774, 216} \[ -\frac {\sqrt {2} (A+C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 C \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(2*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(Sqrt[a]*d) - (Sqrt[2]*(A + C)*ArcTan[(Sqrt[a]*S
in[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + (2*A*Sin[c + d*x])/(d*Sqrt[
Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rubi steps

\begin {align*} \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx &=\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {-\frac {a A}{2}+\frac {1}{2} a C \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{a}\\ &=\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+(-A-C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx+\frac {C \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{a}\\ &=\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {(2 C) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a d}+\frac {(2 a (A+C)) \operatorname {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=\frac {2 C \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.48, size = 235, normalized size = 1.74 \[ \frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (\frac {(A+C) \csc ^3\left (\frac {1}{2} (c+d x)\right ) \left (5 \cos ^2(c+d x) (\cos (c+d x)+2) \left (-\cos (c+d x)+\cos (c+d x) \sqrt {2-2 \sec (c+d x)} \tanh ^{-1}\left (\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right ) (-\sec (c+d x))}\right )+1\right )-\sin ^4\left (\frac {1}{2} (c+d x)\right ) \sin ^2(c+d x) \, _2F_1\left (2,\frac {5}{2};\frac {7}{2};-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )\right )}{2 \cos ^{\frac {5}{2}}(c+d x)}+5 C \left (\sqrt {2} \sin ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )-\frac {2 \sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )\right )}{5 d \sqrt {a (\cos (c+d x)+1)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(2*Cos[(c + d*x)/2]*(5*C*(Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] - (2*Sin[(c + d*x)/2])/Sqrt[Cos[c + d*x]])
+ ((A + C)*Csc[(c + d*x)/2]^3*(5*Cos[c + d*x]^2*(2 + Cos[c + d*x])*(1 - Cos[c + d*x] + ArcTanh[Sqrt[-(Sec[c +
d*x]*Sin[(c + d*x)/2]^2)]]*Cos[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]) - Hypergeometric2F1[2, 5/2, 7/2, -(Sec[c + d
*x]*Sin[(c + d*x)/2]^2)]*Sin[(c + d*x)/2]^4*Sin[c + d*x]^2))/(2*Cos[c + d*x]^(5/2))))/(5*d*Sqrt[a*(1 + Cos[c +
 d*x])])

________________________________________________________________________________________

fricas [A]  time = 1.87, size = 179, normalized size = 1.33 \[ \frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} A \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, {\left (C \cos \left (d x + c\right )^{2} + C \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right )^{2} + {\left (A + C\right )} a \cos \left (d x + c\right )\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(2*sqrt(a*cos(d*x + c) + a)*A*sqrt(cos(d*x + c))*sin(d*x + c) - 2*(C*cos(d*x + c)^2 + C*cos(d*x + c))*sqrt(a)*
arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) + sqrt(2)*((A + C)*a*cos(d*x + c)^2
 + (A + C)*a*cos(d*x + c))*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/
sqrt(a))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(sqrt(a*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 0.41, size = 271, normalized size = 2.01 \[ -\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (2 A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}+4 A \sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}+2 A \sin \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}+A \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )+C \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )+2 C \left (\cos ^{3}\left (d x +c \right )\right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{d \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{\frac {5}{2}} \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x)

[Out]

-1/d*(-1+cos(d*x+c))*(2*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+4*A*sin(d*x+c)*cos(d*x+c)*
(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+2*A*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+A*arcsin((-1+cos(d*x+c))/si
n(d*x+c))*2^(1/2)*cos(d*x+c)^3+C*arcsin((-1+cos(d*x+c))/sin(d*x+c))*2^(1/2)*cos(d*x+c)^3+2*C*cos(d*x+c)^3*arct
an(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^2/cos(d*x+c)^
(5/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/a

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: sign: argument cannot be imaginary
; found %i

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/(sqrt(a*(cos(c + d*x) + 1))*cos(c + d*x)**(3/2)), x)

________________________________________________________________________________________